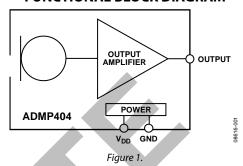


Omnidirectional Microphone with Bottom Port and Analog Output

Data Sheet ADMP404

FEATURES

Tiny 3.35 mm \times 2.50 mm \times 0.88 mm surface-mount package High SNR of 62 dBA High sensitivity of -38 dBV Flat frequency response from 100 Hz to 15 kHz Low current consumption: <250 μ A Single-ended analog output High PSR of 70 dB Compatible with Sn/Pb and Pb-free solder processes RoHS/WEEE compliant


APPLICATIONS

Smartphones and feature phones Teleconferencing systems Digital video cameras Bluetooth headsets Video phones Tablets

GENERAL DESCRIPTION

The ADMP404¹ is a high quality, high performance, low power, analog output bottom-ported omnidirectional MEMS microphone. The ADMP404 consists of a MEMS microphone element, an impedance converter, and an output amplifier. The ADMP404 sensitivity specification makes it an excellent choice for both near field and far field applications. The ADMP404 has a high signal-to-noise ratio (SNR) and flat, wideband frequency response, resulting in natural sound with high intelligibility. Its low current consumption enables long battery life for portable applications.

FUNCTIONAL BLOCK DIAGRAM

The ADMP404 complies with the TIA-920 *Telecommunications Telephone Terminal Equipment Transmission Requirements for Wideband Digital Wireline Telephones* standard.

The ADMP404 is available in an ultraminiature 3.35 mm \times 2.50 mm \times 0.88 mm surface-mount package. It is reflow solder compatible with no sensitivity degradation. The ADMP404 is halide free.

¹ Protected by U.S. Patents 7,449,356; 7,825,484; 7,885,423; 7,961,897. Other patents are pending.

TABLE OF CONTENTS

Features
Applications1
Functional Block Diagram
General Description
Revision History
Specifications
Absolute Maximum Ratings
ESD Caution4
Pin Configuration and Function Descriptions5
Typical Performance Characteristics
Applications Information
REVISION HISTORY
REVISION HISTORY 7/12—Rev. B to Rev. C
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section,
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout
7/12—Rev. B to Rev. C Changes to Features Section, General Description Section, Figure 1, and Page 1 Layout

Connecting to Analog Devices Audio Codecs	/
Supporting Documents	
PCB Land Pattern Layout	
Handling Instructions	9
Pick and Place Equipment	9
Reflow Solder	9
Board Wash	9
Reliability Specifications	10
Outline Dimensions	11
Ordering Guide	11

8/11—Rev. A to Rev. B

Changes to Figure 1	1
Changes to Supply Voltage Parameter, Table 1	3
Changes to Table 3	4
Added Connecting to Analog Devices, Inc., Audio Codecs	
Section and Supporting Documents Section	7
Changes to Pick and Place Equipment	
Section (20 kg to 10 kg)	9
Added LGA_CAV Tape and Reel Outline Dimensions,	
Figure 12	11
12/10—Rev. 0 to Rev. A	
Changes to Applications Section and General	
Description Section	1
Changes to Table 1	3
Changes to Table 2	4

7/10—Revision 0: Initial Version

SPECIFICATIONS

 $T_A = 25$ °C, $V_{DD} = 1.8$ V, unless otherwise noted. All minimum and maximum specifications are guaranteed. Typical specifications are not guaranteed.

Table 1.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
PERFORMANCE						
Directionality				Omni		
Sensitivity		1 kHz, 94 dB SPL	-41	-38	-35	dBV
Signal-to-Noise Ratio	SNR			62		dBA
Equivalent Input Noise	EIN			32		dBA SPL
Dynamic Range		Derived from EIN and maximum acoustic input		88		dB
Frequency Response ¹		Low frequency –3 dB point		100		Hz
		High frequency −3 dB point		15		kHz
		Deviation limits from flat response within pass band		-3/+2		dB
Total Harmonic Distortion	THD	105 dB SPL			3	%
Power Supply Rejection	PSR	217 Hz, 100 mV p-p square wave superimposed on $V_{DD} = 1.8 \text{ V}$		70		dB
Maximum Acoustic Input		Peak		120		dB SPL
POWER SUPPLY						
Supply Voltage	V_{DD}		1.5		3.3	V
Supply Current	Is				250	μΑ
OUTPUT CHARACTERISTICS						
Output Impedance	Z _{OUT}			200		Ω
Output DC Offset				8.0		V
Output Current Limit				90		μΑ

¹ See Figure 4 and Figure 6.

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	-0.3 V to +3.6 V
Sound Pressure Level (SPL)	160 dB
Mechanical Shock	10,000 <i>g</i>
Vibration	Per MIL-STD-883 Method 2007, Test Condition B
Temperature Range	-40°C to +85°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to ayoid performance degradation or loss of functionality.

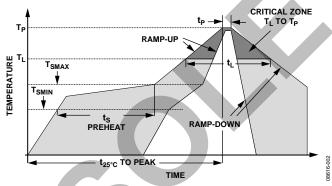
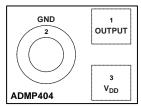



Figure 2. Recommended Soldering Profile Limits

Table 3. Recommended Soldering Profile Limits

Profile Feature	Sn63/Pb37	Pb-Free
Average Ramp Rate (T _L to T _P)	125°C/sec maximum	125°C/sec maximum
Preheat		
Minimum Temperature (T _{SMIN})	100°C	100°C
Maximum Temperature (T _{SMAX})	150°C	200°C
Time (T _{SMIN} to T _{SMAX}), ts	60 sec to 75 sec	60 sec to 75 sec
Ramp-Up Rate (T _{SMAX} to T _L)	125°C/sec	125°C/sec
Time Maintained Above Liquidous (t _L)	45 sec to 75 sec	~50 sec
Liquidous Temperature (T _L)	183°C	217°C
Peak Temperature (T _P)	215°C +3°C/-3°C	245°C 0°C/-5°C
Time Within 5°C of Actual Peak Temperature (t _P)	20 sec to 30 sec	20 sec to 30 sec
Ramp-Down Rate	3°C/sec maximum	3°C/sec maximum
Time 25°C (t _{25°C}) to Peak Temperature	5 minute maximum	5 minute maximum

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

TOP VIEW (TERMINAL SIDE DOWN) Not to Scale

Figure 3. Pin Configuration

Table 4. Pin Function Descriptions

	L		
Pin No.	Mnemonic	Description	
1	OUTPUT	Analog Output Signal	
2	GND	Ground	
3	V_{DD}	Power Supply	

TYPICAL PERFORMANCE CHARACTERISTICS

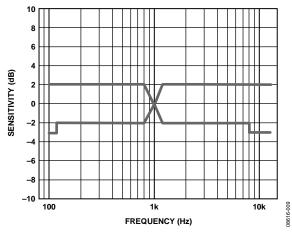


Figure 4. Frequency Response Mask

Figure 5. Typical Power Supply Rejection Ratio vs. Frequency

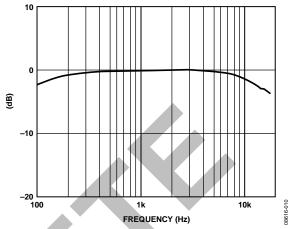


Figure 6. Typical Frequency Response (Measured)

APPLICATIONS INFORMATION CONNECTING TO ANALOG DEVICES AUDIO CODECS

The ADMP404 output can be connected to a dedicated codec microphone input (see Figure 7) or to a high input impedance gain stage (see Figure 8). A 0.1 μF ceramic capacitor placed close to the ADMP404 supply pin is used for testing and is recommended to adequately decouple the microphone from noise on the power supply. A dc-blocking capacitor is required at the output of the microphone. This capacitor creates a high-pass filter with a corner frequency at

$$f_C = 1/(2\pi \times C \times R)$$

where R is the input impedance of the codec.

A minimum value of 2.2 μF is recommended in Figure 7 because the input impedance of the ADAU1361/ADAU1761 can be as low as 2 $k\Omega$ at its highest PGA gain setting, which results in a high-pass filter corner frequency at about 37 Hz. Figure 8 shows the ADMP404 connected to the ADA4897-1 op amp configured as a noninverting preamplifier.

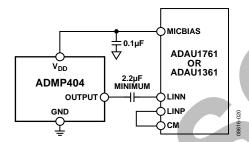


Figure 7. ADMP404 Connected to the Analog Devices ADAU1761 or ADAU1361 Codec

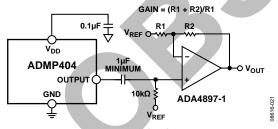


Figure 8. ADMP404 Connected to the ADA4897-1 Op Amp

SUPPORTING DOCUMENTS

Evaluation Board User Guide

UG-142, EVAL-ADMP404Z-FLEX: Bottom-Ported Analog Output MEMS Microphone Evaluation Board

Application Notes

AN-1003, Recommendations for Mounting and Connecting Analog Devices, Inc., Bottom-Ported MEMS Microphones

AN-1068, Reflow Soldering of the MEMS Microphone

AN-1112, Microphone Specifications Explained

AN-1124, Recommendations for Sealing Analog Devices, Inc., Bottom-Port MEMS Microphones from Dust and Liquid Ingress

AN-1140, Microphone Array Beamforming

Circuit Notes

CN-0207, High Performance Analog MEMS Microphone's Simple Interface to SigmaDSP Audio Codec

CN-0262, Low Noise Analog MEMS Microphone and Preamp with Compression and Noise Gating

PCB LAND PATTERN LAYOUT

The recommended PCB land pattern for the ADMP404 should be laid out to a 1:1 ratio to the solder pads on the microphone package, as shown in Figure 9. Take care to avoid applying solder paste to the sound hole in the PCB. A suggested solder

paste stencil pattern layout is shown in Figure 10. The diameter of the sound hole in the PCB should be larger than the diameter of the sound port of the microphone. A minimum diameter of 0.5 mm is recommended.

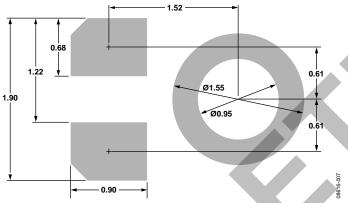


Figure 9. PCB Land Pattern Layout

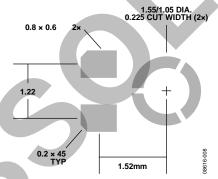


Figure 10. Suggested Solder Paste Stencil Pattern Layout

HANDLING INSTRUCTIONS PICK AND PLACE EQUIPMENT

The MEMS microphone can be handled using standard pickand-place and chip shooting equipment. Care should be taken to avoid damage to the MEMS microphone structure as follows:

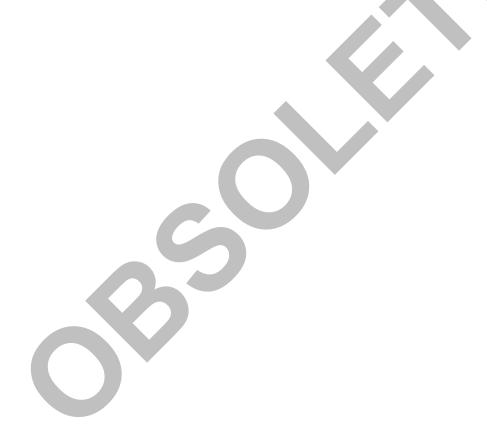
- Use a standard pickup tool to handle the microphone.
 Because the microphone hole is on the bottom of the package, the pickup tool can make contact with any part of the lid surface.
- Use care during pick-and-place to ensure that no high shock events above 10 kg are experienced because such events may cause damage to the microphone.
- Do not pick up the microphone with a vacuum tool that makes contact with the bottom side of the microphone.
 Do not pull air out of or blow air into the microphone port.
- Do not use excessive force to place the microphone on the PCB.

REFLOW SOLDER

For best results, the soldering profile should be in accordance with the recommendations of the manufacturer of the solder paste used to attach the MEMS microphone to the PCB. It is recommended that the solder reflow profile not exceed the limit conditions specified in Figure 2 and Table 3.

BOARD WASH

When washing the PCB, ensure that water does not make contact with the microphone port. Blow-off procedures and ultrasonic cleaning must not be used.



RELIABILITY SPECIFICATIONS

The microphone sensitivity after stress must deviate by no more than ± 3 dB from the initial value.

Table 5.

Stress Test	Description
Low Temperature Operating Life	–40°C, 500 hours, powered
High Temperature Operating Life	+125°C, 500 hours, powered
Temperature Humidity Bias (THB)	+85°C/85% relative humidity (RH), 500 hours, powered
Temperature Cycle	-40°C/+125°C, one cycle per hour, 1000 cycles
High Temperature Storage	+150°C, 500 hours
Low Temperature Storage	-40°C, 500 hours
Component CDM ESD	All pins, 0.5 kV
Component HBM ESD	All pins, 1.5 kV
Component MM ESD	All pins, 0.2 kV

OUTLINE DIMENSIONS

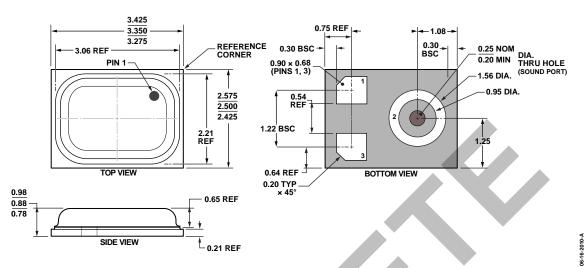


Figure 11. 3-Terminal Chip Array Small Outline No Lead Cavity [LGA_CAV] 3.35 mm \times 2.50 mm Body (CE-3-2) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option ²	Ordering Quantity
ADMP404ACEZ-RL	-40°C to +85°C	3-Terminal LGA_CAV, 13" Tape and Reel	CE-3-2	10,000
ADMP404ACEZ-RL7	−40°C to +85°C	3-Terminal LGA_CAV, 7"Tape and Reel	CE-3-2	1,000
EVAL-ADMP404Z-FLEX		Evaluation Board		

¹ Z = RoHS Compliant Part. ² This package option is halide free.

NOTES

X-ON Electronics

Largest Supplier of Electrical and Electronic Components

Click to view similar products for analog devices manufacturer:

Other Similar products are found below:

OP484ESZ-REEL AD8664ARUZ-REEL ADSP-21469BBC-3 HMC444LP4ETR LTC1564CG#PBF HMC505LP4ETR 5962-8686101XA
5962-89710013X 5962-9176404M3A 5962-9316401MXA 5962-9452101M2A EV1HMC1160LP5 EV1HMC305SLP4 EV1HMC306AMS10
EV1HMC557ALC4 EV1HMC6146BLC5A EV1HMC6832ALP5L EV1HMC7912LP5 EV1HMC951BLP4 EV-AD5443/46/53SDZ EVADF70301-433AZ EV-ADF70301-868BZ EV-ADUCM322IQSPZ EV-ADUCM322QSPZ EVAL01-HMC1048LC3B EVAL01HMC1055LP2C EVAL01-HMC1063LP3 EVAL01-HMC197B EVAL01-HMC760LC4B EVAL01-HMC829LP6GE EVAL01HMC833LP6GE EVAL01-HMC835LP6G EVAL01-HMC985LP4KE EVAL01-HMC987LP5E EVAL01-HMC988LP3E EVAL01HMC995LP5GE EVAL02-HMC1034LP6G EVAL-3CH4CHSOICEBZ EVAL-AD1871EBZ EVAL-AD5063EBZ EVAL-AD5064EBZ
EVAL-AD5171DBZ EVAL-AD5273DBZ EVAL-AD5363EBZ EVAL-AD5422LFEBZ EVAL-AD5629RSDZ EVAL-AD7262EDZ EVALAD7641EDZ EVAL-AD7655EDZ EVAL-AD7761FMCZ